# Fast and Multi-aspect Mining of Complex Time-stamped Event Streams

Kota Nakamura, Yasuko Matsubara, Koki Kawabata,

Yuhei Umeda, Yuichiro Wada, Yasushi Sakurai







#### Complex Time-stamped Event Streams are Everywhere

☐ A huge, online stream of time-stamped events with multiple attributes



#### Complex Time-stamped Event Streams are Everywhere

☐ A huge, online stream of time-stamped events with multiple attributes

3 attributes (M=3)



| TimeStamp        | Brand   | Item category  | Price |
|------------------|---------|----------------|-------|
| 2023-04-30-21:01 | Tefal   | Kettle         | \$45  |
| 2023-04-30-21:01 | Bosch   | Refrigerator   | \$200 |
| 2023-04-30-21:02 | Samsung | TV             | \$650 |
| 2023-04-30-21:03 | Sony    | Portable audio | \$200 |
| 2023-04-30-21:08 | LG      | TV             | \$400 |
| 2023-04-30-21:11 | Dell    | Monitor        | \$90  |
| 2023-04-30-21:13 | Philips | Headphones     | \$190 |

#### Complex Time-stamped Event Streams are Everywhere

☐ A huge, online stream of time-stamped events with multiple attributes

2 attributes (M=2)



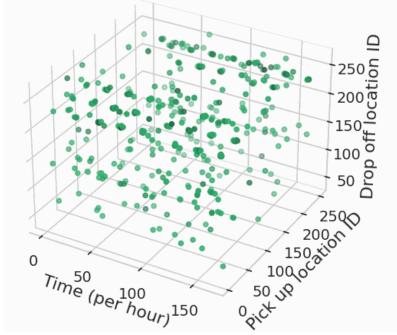
| TimeStamp        | Pick-up location | drop-up location |
|------------------|------------------|------------------|
| 2023-04-30-20:01 | Museum C         | Museum B         |
| 2023-04-30-21:02 | Cinema A         | Street C         |
| 2023-04-30-21:06 | School D         | Restaurant A     |
| 2023-04-30-21:18 | Office A         | Station A        |
| 2023-04-30-22:08 | Street A         | University D     |
| 2023-05-01-09:11 | Hotel B          | Airport A        |
| 2023-05-01-11:13 | Station C        | Street B         |

#### Limitations & Challenges

Complex time-stamped event streams ...

derail existing methods and even our interpretation





3<sup>rd</sup> -order tensor stream: each aspect indicates each attributes

Because this is...

#### High-order tensor streams

- High-dimensional
- Sparse
- Semi-infinite

#### **Our Questions**

- Q. How can we summarize large, dynamic high-order tensor streams?
- Q. How can we see any hidden patterns, rules, and anomalies?

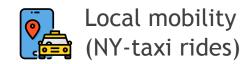
#### **Our Questions**

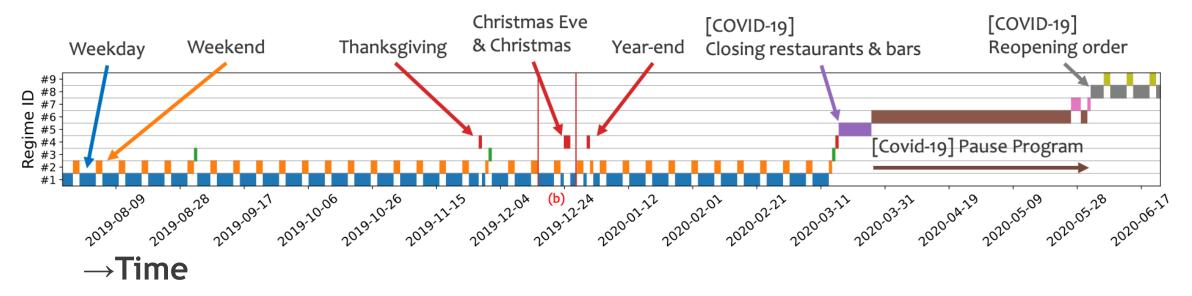
- Q. How can we summarize large, dynamic high-order tensor streams?
- Q. How can we see any hidden patterns, rules, and anomalies?

Our answer is ...
to focus on two types of patterns,
Regimes and Components

#### Our Answer: Regimes and Components

#### Regimes: Distinct time-evolving patterns





□Summarize **semi-infinite** event stream into a handful number of segments

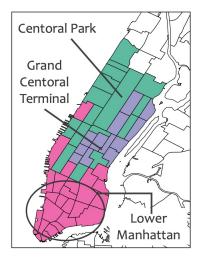
#### Our Answer: Regimes and Components

#### Components: Multi-aspect latent trends

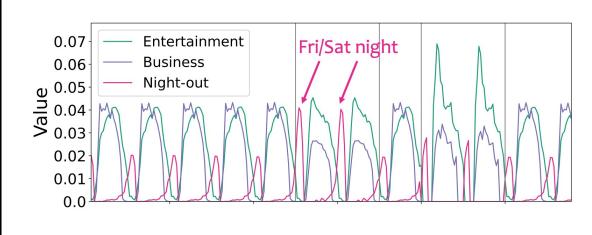




Pick-up location



Drop-off location



Timestamp (Pick-up time)

□Summarize **high-deimensional** and **sparse** events into major groups

#### **Outline**

Introduction

► Model

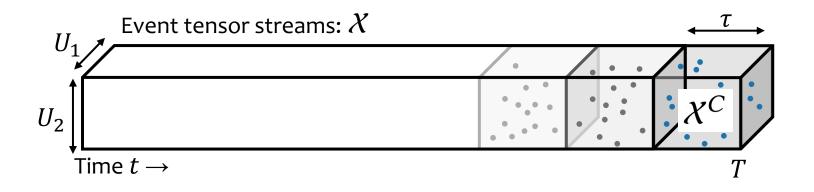
Algorithm

Experiments

Conclusion

#### Our Settings: Complex Time-stamped Event Streams

- ☐ Event stream, which consist of {M attributes + Timestamp}
  - $\rightarrow$  M+1th-order tensor stream  $\mathcal{X} \in \mathbb{N}^{U_1 \times \cdots \times U_M \times T}$
- $\square$  Continuously obtain **Current tensors**  $\mathcal{X}^C \in \mathbb{N}^{U_1 \times \cdots \times U_M \times \tau}$



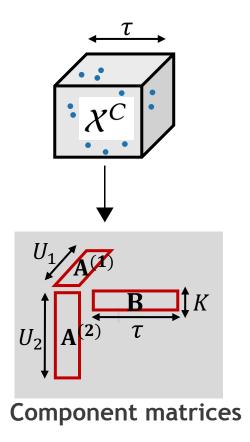
#### **Proposed Model**

- Q1. What is the simplest mathmatical model for components?
- Q2. How can we represent regimes and summarize the whole stream?
- Q3. How can we formulate the summarization problem?

- G1. Multi-aspect component factorization
- G2. Compact description
- G3. Problem formulation in a data compression paradigm

#### G1. Multi-aspect Component Factorization

**Goal**: to describe a high-dimensional and sparse tensor  $\mathcal{X}^C$  as compact and interpretable model



#### Multi-aspect Component factorization

- ☐ Model the generative process of events
- $\square$  Assume that there are K major trends/components
- $\square$  k-th **component** is defined by probability distribution w.r.t. M attributes and time

$$\mathbf{A}_k^{(m)} \in \mathbb{R}^{U_m}, \mathbf{B}_t \in \mathbb{R}^K$$

 $\mathbf{A}_k^{(m)} \sim \mathrm{Dirichlet}(\alpha^{(m)}), \; \mathbf{B}_t \sim \mathrm{Dirichlet}(\beta)$ 

#### G1. Multi-aspect Component Factorization

#### The generative process:

- For each component k = 1, ..., K:
  - For each attribute m = 1, ..., M:
    - \*  $\mathbf{A}_{k}^{(m)} \sim \text{Dirichlet}(\Sigma_{l=1}^{L} \alpha^{(m)} l \hat{\mathbf{A}}_{k}^{(m)})$
- For each time  $t = 1, ..., \tau$ :
  - $\mathbf{B}_t \sim \text{Dirichlet}(\Sigma_{l=1}^L \beta_l \hat{\mathbf{B}}_t)$
  - For each entry  $j = 1, ..., N_t$ :
    - \*  $z_{t,j} \sim \text{Multinomial}(\mathbf{B}_t)$  // Draw a latent component  $z_{t,j}$
    - \* For each attribute m = 1, ..., M:
      - $\cdot \ e_{t,j}^{(m)} \sim \text{Multinomial}(\mathbf{A}_{z_{t,j}}^{(m)}), // \text{Draw a unit in each attribute}$

Capture temporal dependencies without storing tensors



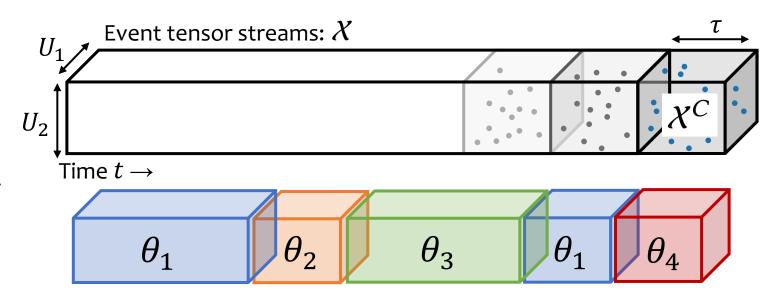
- □Summarize sparse activity into *K* components
- ☐ Mutli-aspect property: handle arbitrary-order tensors
- □Online setting: capture temporal dependencies without storing tensors

#### G2. Compact description

**Goal**: to represent the whole stream  $\mathcal{X}$  , containing distinct dynamical patterns

#### Regime:

$$\theta = \{ \{ \mathbf{A}^m \}_{m=1}^M, \mathbf{B} \}$$



#### Compact description: $C = \{R, \Theta, G, S\}$

- $\Box$  the number of regimes R and the regime set  $\Theta$
- $\Box$  the number of segments G and the assignments S

#### G3. Problem Formulation: Data Compression Paradigm

#### What is good summarization?

- ☐ Minimum Description Length (MDL) principle:
  - "the more we can compress the data, the more we can learn about their underlying patterns"
- ☐ Evaluate the total encoding cost, which is used to losslessly compress the original data streams

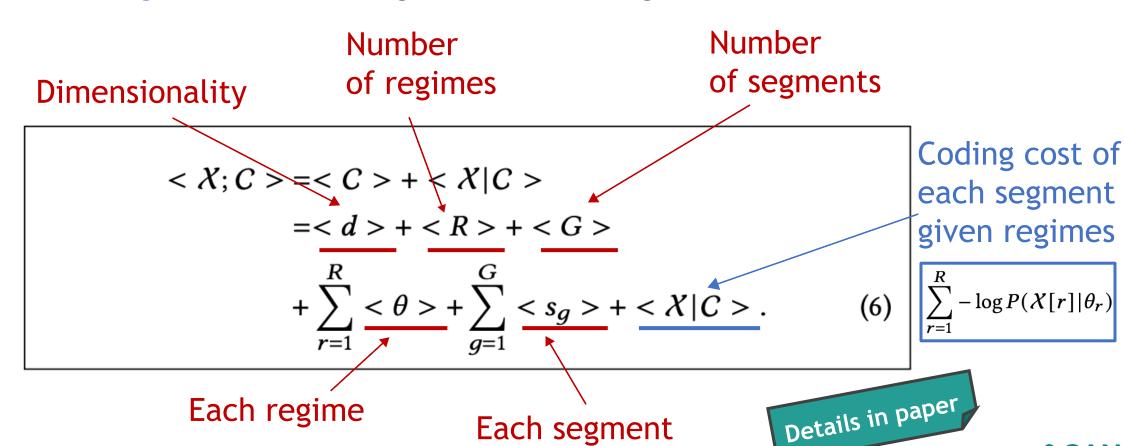
#### **Summarization Problem**

Find the compact description C, which minimizes the total encoding cost

$$< X; C > = < C > + < X|C >$$
Model
Data
coding cost coding cost

#### G3. Problem Formulation: Data Compression Paradigm

- $\square$  Model Coding Cost: the number of bits needed to describe the model  $\mathcal C$
- $\Box$  Data Coding Cost: the coding cost of data X given the model C



Each segment

#### **Outline**

Introduction

Model

Algorithm

Experiments

Conclusion



#### Streaming Algorithm: CubeScope

#### Given:

Complex time-stamped event streams







#### CubeScope

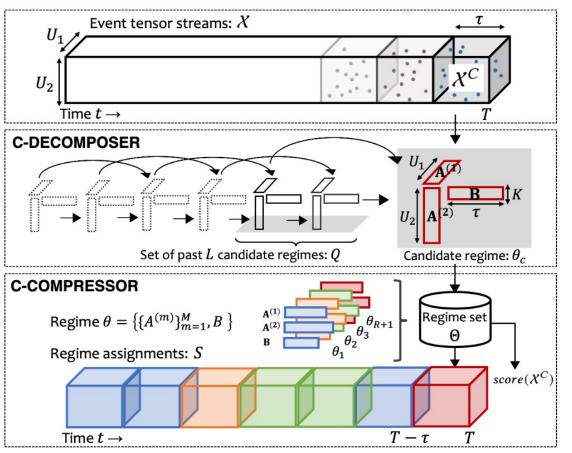
- ☐ Finds
  - ☐ Components (Multi-aspect latent trends/groups)
  - ☐ Regimes (Distinct time-evolving patterns)
- ☐ Detects anomalies and their types



#### Streaming Algorithm: CubeScope



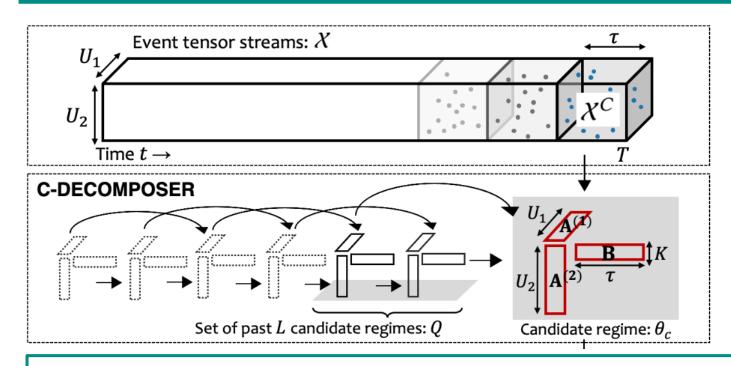
#### Our **CubeScope** consists of two sub-algorithms:



- ☐ C-Decomposer:
  - lacksquare incrementally monitors  $\mathcal{X}^C$
  - $\Box$  estimates a candidate regime  $\theta_c$
- ☐ C-Compressor:
  - $lue{}$  Updates the compact description  $\mathcal{C}$
  - $\square$  Measures the anomalousness of  $\mathcal{X}^C$

#### **C-Decomposer**





### ☐ Regime estimation with collapsed Gibbs sampling

$$\begin{split} &p(z_{u_1,\dots,u_M,t} = k \mid \mathcal{X}^C, \mathbf{B}', \hat{\mathbf{B}}, \beta, \{\mathbf{A}^{(m)'}, \hat{\mathbf{A}}^{(m)}, \alpha^{(m)}\}_{m=1}^M) \\ &\propto \frac{b'_{t,k} + \sum_{l=1}^L \beta_l \hat{b}_{t,k}}{\sum_{k=1}^K b'_{t,k} + L\beta} \cdot \prod_{m=1}^M \frac{a_{u_m,k}^{(m)'} + \sum_{l=1}^L \alpha^{(m)} _l \hat{a}_{u_m,k}^{(m)}}{\sum_{u=1}^{U_m} a_{u,k}^{(m)'} + L\alpha^{(m)}}, \\ &\tilde{a}_{u,k}^{(m)} \propto \frac{a_{u,k}^{(m)} + \sum_{l=1}^L \alpha^{(m)} _l \hat{a}_{u,k}^{(m)}}{\sum_{u=1}^{U_m} a_{u,k}^{(m)} + L\alpha^{(m)}}, \tilde{b}_{t,k} \propto \frac{b_{t,k} + \sum_{l=1}^L \beta_l \hat{b}_{t,k}}{\sum_{k=1}^K b_{t,k} + L\beta} \end{split}$$

#### C-Decomposer is **Efficient**

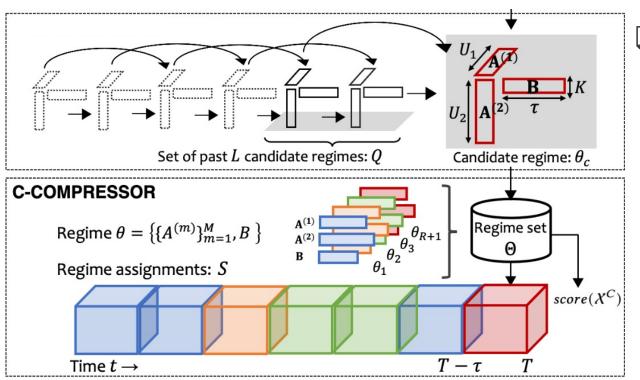
- $\square$  Independ on dimensionality, i.e., it takes O(N), N: the number of events
- $\square$  Conventional algorithms (e.g., ALS) are expensive for high-order tensor these scale w.r.t. all the attributes, i.e., take  $O(\prod_{m=1}^{M} U_m)$

#### **C-Compressor**



#### □Insertion-based algorithm:

Maintains a resonable description  $\mathcal C$  for  $\mathcal X$  and generates new regime if necessary



□ Compares encoding costs  $\langle X^C; \theta_* \rangle$  between  $\theta_c$  and  $\theta_p$ 

$$< X^{C}; \theta_{*} > = \Delta < C > + < X^{C} | \theta_{*} >,$$
 (9)  
 $\Delta < C > = \log^{*}(R+1) - \log^{*}(R) + < \theta_{*} >$   
 $+ \log^{*}(G+1) - \log^{*}(G) + < s >,$  (10)

Candidate regime  $\theta_c$ 

Previous regime  $\theta_p$ 



#### C-Compressor: Stream Anomaly Detection



#### ☐ Compression-based anomaly detection

☐ Higher compression cost → higher anomalousness score

$$norm = \underset{r \in R}{arg \max} |\mathcal{S}_r^{-1}|,$$
  
 $score(\mathcal{X}^C) = \langle \mathcal{X}^C | \theta_{norm} \rangle,$ 

#### C-Compressor is Adaptive

- ☐ The concept of **normal changes** over time
  - → Adaptively change the baseline to judge incoming tensors
- ☐ Data streams contain multiple anomalies over time
  - → Discard anomalies from the baseline

#### **Outline**

Introduction

Model

Algorithm

Experiments

Conclusion

#### **Experimental Questions**

We aim to evaluate that *CubeScope* has ...

#### Q1. Effectiveness:

How successfully does it discover meaningful patterns?

#### Q2. Accuracy:

How accurately does it achieve modeling, clustering, and anomaly detection?

#### Q3. Scalability:

How does it scale in terms of computational time?

#### **Experimental Setup**

#### 12 datasets

(8 real-world datasets + 4 synthetics)

| _        | Dataset                                                                                 | The form of entry                                                                                               |        |  |  |
|----------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------|--|--|
| <b>—</b> | Local Mobility: Ride information attributes & timestamp $\rightarrow$ #rides            |                                                                                                                 |        |  |  |
|          | #1 NYC-Taxi [8]<br>#2 Bike-Share [2]                                                    | (Pick-up/Drop-off location ID, Time)<br>(User's age, Start/End station ID, Time)                                | 3<br>4 |  |  |
|          | E-commerce: Purchase information attributes & timestamp $\rightarrow$ #purchases        |                                                                                                                 |        |  |  |
| 0 0 0 0  | #3 Jewelry [4]<br>#4 Electronics [3]                                                    | (Price, Brand, Gem, Accessory type, Time)<br>(Brand, Item category, Time)                                       | 4 3    |  |  |
|          | Network traffic/intrusion: Access detail attributes & timestamp $\rightarrow$ #accesses |                                                                                                                 |        |  |  |
|          | #5 AirForce [5]                                                                         | (Protocol type, Service, Flag, Land, Duration<br>Src/Dst bytes, Wrong fragment, Urgent, Time)                   | 10     |  |  |
|          | #6 External [1]                                                                         | (Proto, Src/Dst IP Addr, Src/Dst Pt, Flags,Duration,Packets,Bytes, Time)                                        | 10     |  |  |
| ATTO)    | #7 OpenStack [1]                                                                        | "                                                                                                               | 10     |  |  |
|          | #8 <i>Kyoto</i> [9]                                                                     | (Src/Dst bytes, Count, Same srv/Serror/Srv serror rate,                                                         | 15     |  |  |
| _        |                                                                                         | Dst host serror rate/same src port rate/srv serrors rate, Dst host count/srv count, Duration,Service,Flag,Time) |        |  |  |

#### 12 Baselines

- ☐ NTM
- ☐ TriMine
- ☐ K-means
- ☐ TICC
- ☐ CubeMarker
- ☐ T-LSTM
- ☐ DBSTREAM
- ☐ LOF
- ☐ iForest
- ☐ RRCF
- MemStream

Probabilistic generative models

Clustering approaches for time series, tensor, and data streams

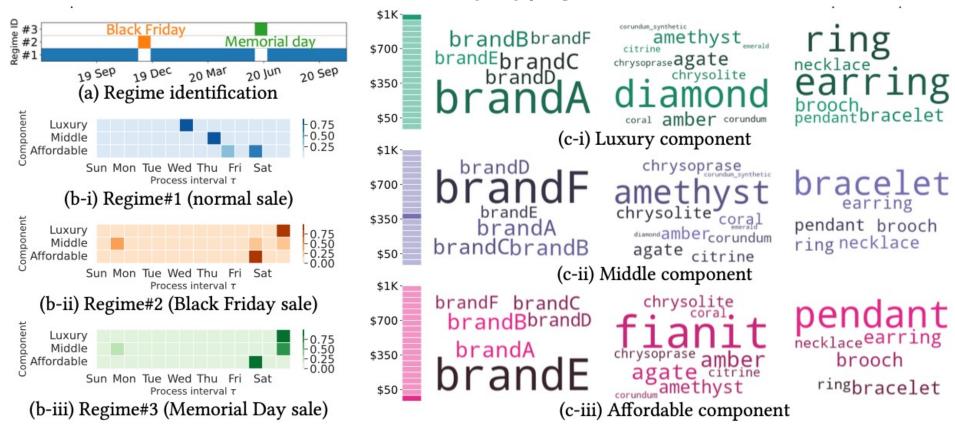
Unsupervised anomaly detection methods





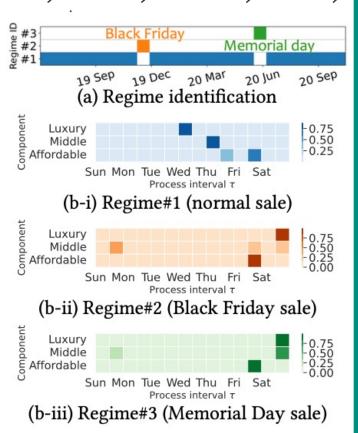


Jewerly Dataset: 4rd-order tensor stream {Time, Price, Brand, Gem, Accessory type}





Jewerly Dataset: 4rd-order {Time, Price, Brand, Gem,





#### Regimes:

Distinct dynamical patterns

# Changes in Purchase behavior

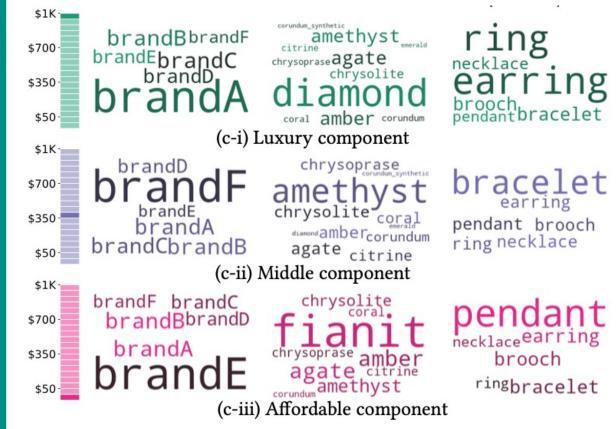


#### **Online Marketing Analytics**

# Components: multi-aspect latent trends User preferences

tensor stream

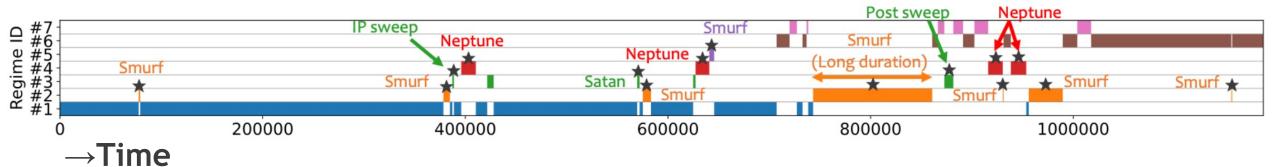
Accessory type}



#### Q1. Effectiveness: Cybersecurity



AirForce Dataset: 10th-order tensor stream {Time, Protocol type, Service, Flag, Land, Duration, Src/Dst bytes, Wrong fragment, Urgent}



#### found Regimes that most corresponded to actual intrusions

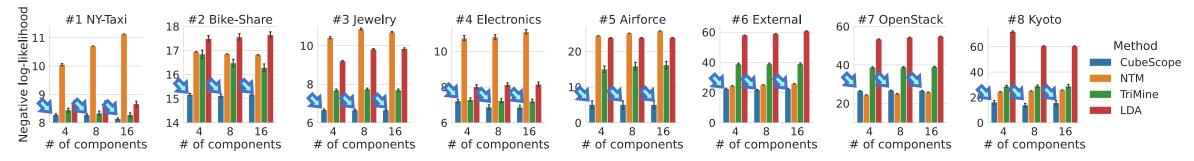
☐ These intrusions arise over time and thus their numbers, durations, and features are unknown in advance



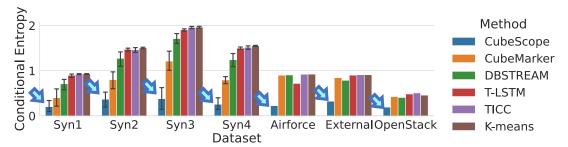
#### Q2. ACCURACY: Modeling, Clustering, Anomaly Detection

#### "How does CubeScope achieve modeling, clustering, and anomaly detection?"

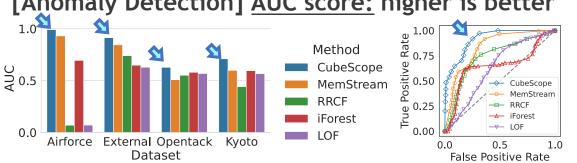
#### [Modeling] Negative log-likelihood: lower is better



#### [Clustering] CE score: lower is better



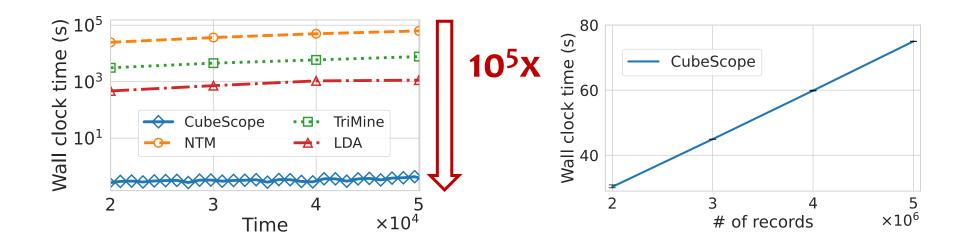
#### [Anomaly Detection] <u>AUC score</u>: higher is better



#### CubeScope consistently outperforms its baselines

#### Q3. Scalability

"How does CubeScope scale in terms of computational time?"



## CubeScope is up to 312,000x faster than baselines and scales linearly

#### **Outline**

Introduction

Model

Algorithm

Experiments

**Conclusion** 

#### Conclusion

#### **Effective**

- ☐ Introduce regimes and components
- Formulate the summarization problem for capturing these patterns
- ☐ Design *CubeScope* to solve the summarization problem

#### <u>General</u>

- ☐ Perform data compression, pattern discovery, and anomaly detection
- Practical in multiple domains,
   such as local mobility, online market analytics, and cybersecurity

#### **Scalable**

☐ Fast and constant computational time w.r.t. the entire stream length and its dimensionality

#### Thank you!



#### Data&Code:

